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Notations
(The number after the item indicates the page where the notation is defined.)

SET THEORY >i[ISi intersection of sets Si, i [ I
 <i[ISi union of sets Si, i [ I
 [a]  {x [ S | x , a}, equivalence class of S containing a, 18
 |s| number of elements in the set of S

SPECIAL SETS Z  integers, additive groups of integers, ring of integers
 Q  rational numbers, field of rational numbers
 Q1  multiplicative group of positive rational numbers
 F* set of nonzero elements of F
 R real numbers, field of real numbers
 R1 multiplicative group of positive real numbers
 C complex numbers

FUNCTIONS f21  inverse of the function f
AND ARITHMETIC t | s  t divides s, 3
 t B s t does not divide s, 3
 gcd(a, b)  greatest common divisor of the integers a and b, 4
 lcm(a, b)  least common multiple of the integers a and b, 6
 |a 1 b| 2a2 � b2, 13
 f(a) image of a under f, 20
 f: A → B mapping of A to B, 21
 gf, ab composite function, 21

ALGEBRAIC SYSTEMS D4  group of symmetries of a square, dihedral group of 
order 8, 33

 Dn  dihedral group of order 2n, 34
 e identity element, 43
 Zn  group {0, 1, . . . , n 2 1} under addition modulo n, 44
 det A the determinant of A, 45
 U(n)  group of units modulo n (that is, the set of integers 

less than n and relatively prime to n under multiplica-
tion modulo n), 46

 Rn  {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}, 47
 SL(2, F)  group of 2 3 2 matrices over F with  

determinant 1, 47
 GL(2, F)  2 3 2 matrices of nonzero determinants with coeffi-

cients from the field F (the general linear group), 48
 g21 multiplicative inverse of g, 51
 2g additive inverse of g, 51
 UGU order of the group G, 60
 UgU order of the element g, 60
 H # G subgroup inclusion, 61
 H , G subgroup H 2 G, 61
 kal {an U n [ Z}, cyclic group generated by a, 65
 Z(G)  {a [ G U ax 5 xa for all x in G}, the center of G, 66
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 C(a)  {g [ G U ga 5 ag}, the centralizer of a in G, 68
 kS l subgroup generated by the set S, 71
 C(H)  {x [ G U xh 5 hx for all h [ H}, the centralizer  

of H, 71
 f(n) Euler phi function of n, 83
 Sn  group of one-to-one functions from  

{1, 2, ? ? ? , n} to itself, 95
 An alternating group of degree n, 95
 G < G G and G are isomorphic, 121
 fa  mapping given by fa(x) 5 axa21 for all x, 128
 Aut(G) group of automorphisms of the group G, 129
 Inn(G) group of inner automorphisms of G, 129
 aH {ah U h [ H}, 138
 aHa21 {aha21 | h [ H}, 138
 UG:HU the index of H in G, 142
 HK {hk U h [ H, k [ K}, 144
 stabG(i)  {f [ G U f(i) 5 i}, the stabilizer of i under the per-

mutation group G, 146
 orbG(i)  {f(i ) U f [ G}, the orbit of i under the  

permutation group G, 146
 G1 % G2 % ? ? ? % Gn  external direct product of groups G1, G2, . . . , Gn, 156
 Uk(n) {x [ U(n) U x mod k 5 1}, 160
 H v G H is a normal subgroup of G, 174
 G/H factor group, 176
 H 3 K internal direct product of H and K, 183
 H1 3 H2 3 ? ? ? 3 Hn internal direct product of H1, . . . , Hn, 184
 Ker f kernel of the homomorphism f, 194
 f21(g9) inverse image of g9 under f, 196

 f21(K) inverse image of K under f, 197
 Z[x]  ring of polynomials with integer coefficients, 228
 M2(Z)  ring of all 2 3 2 matrices with integer entries, 228
 R1 % R2 % ? ? ? % Rn direct sum of rings, 229
 nZ ring of multiples of n, 231
 Z[i] ring of Gaussian integers, 231
 U(R) group of units of the ring R, 233
 char R characteristic of R, 240
 kal principal ideal generated by a, 250
 ka1, a2, . . . , anl ideal generated by a1, a2, . . . , an, 250
 R/A factor ring, 250
 A 1 B sum of ideals A and B, 256
 AB product of ideals A and B, 257
 Ann(A) annihilator of A, 258
 N(A) nil radical of A, 258
 F(x) field of quotients of F[x], 269
 R[x] ring of polynomials over R, 276
 deg f (x) degree of the polynomial, 278
 Fp(x) pth cyclotomic polynomial, 294
 M2(Q) ring of 2 3 2 matrices over Q, 330
 kv1, v2, . . . , vnl subspace spanned by v1, v2, . . . , vn, 331
 F(a1, a2, . . . , an) extension of F by a1, a2, . . . , an, 341
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 f 9(x) the derivative of f (x), 346
 [E:F] degree of E over F, 356
 GF( pn) Galois field of order pn, 368
 GF( pn)* nonzero elements of GF( pn), 369
 cl(a) {xax21 U x [ G}, the conjugacy class of a, 387
 np  the number of Sylow p-subgroups of a group, 393
 W(S) set of all words from S, 424
 ka1, a2, . . . , an U w1 5 w2 5

 . . . 5 wtl  group with generators a1, a2, . . . , an and relations w1 
5 w2 5 . . . 5 wt , 426

 Q4 quarternions, 430
 Q6 dicyclic group of order 12, 430
 D` infinite dihedral group, 431
 fix(f) {i [ S U f(i) 5 i}, elements fixed by f, 474
 Cay(S:G)  Cayley digraph of the group G with generating set S, 

482
 k * (a, b, . . . , c) concatenation of k copies of (a, b, . . . , c), 490
 (n, k)  linear code, k-dimensional subspace of Fn, 508
 Fn  F % F % ? ? ? % F, direct product of n copies of the 

field F, 508
 d(u, v)  Hamming distance between vectors u and v, 509
 wt(u)  the number of nonzero components of the vector u 

(the Hamming weight of u), 509
 Gal(E/F) the automorphism group of E fixing F, 531
 EH fixed field of H, 531
 Fn(x) nth cyclotomic polynomial, 548
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xv

Preface

Set your pace to a stroll. Stop whenever you want. Interrupt, jump 
back and forth, I won’t mind. This book should be as easy as  laughter. 
It is stuffed with small things to take away. Please help yourself. 

Willis Goth ReGieR, In Praise of Flattery, 2007

Although I wrote the first edition of this book more than thirty years 
ago, my goals for it remain the same. I want students to receive a solid 
introduction to the traditional topics. I want readers to come away with 
the view that abstract algebra is a contemporary subject–that its con-
cepts and methodologies are being used by working mathematicians, 
computer scientists, physicists, and chemists. I want students to see the 
connections between abstract algebra and number theory and geometry. 
I want students to be able to do computations and to write proofs. I want 
students to enjoy reading the book. And I want convey to the reader my 
enthusiasm for this beautiful subject.

Educational research has shown that an effective way of learning 
mathematics is to interweave worked-out examples and practice prob-
lems. Thus, I have made examples and exercises the heart of the book. 
The examples elucidate the definitions, theorems, and proof techniques. 
The exercises facilitate understanding, provide insight, and develop the 
ability of the students to do proofs. There is a large number of exercises 
ranging from straight forward to difficult and enough at each level so 
that instructors have plenty to choose from that are most appropriate for 
their students. The exercises often foreshadow definitions, concepts, 
and theorems to come. Many exercises focus on special cases and ask 
the reader to generalize. Generalizing is a skill that students should de-
velop but rarely do. Even if an instructor chooses not to spend class time 
on the applications in the book, I feel that having them there demon-
strates to students the utility of the theory.

Changes for the ninth edition include new exercises, new examples, new 
biographies, new quotes, new appliactions, and a freshening of the histori-
cal notes and biographies from the 8th edition. These changes  accentuate 
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xvi Preface

and enhance the hallmark features that have made previous editions of the 
book a comprehensive, lively, and engaging introduction to the subject:

• Extensive coverage of groups, rings, and fields, plus a variety of non-
traditional special topics

• A good mixture of more nearly 1700 computational and theoretical 
exercises appearing in each chapter that synthesize concepts from 
multiple chapters

• Back-of-the-book skeleton solutions and hints to the odd-numbered 
exercises

• Worked-out examples– totaling more than 300–ranging from routine 
computations to quite challenging

• Computer exercises that utilize interactive software available on my 
website that stress guessing and making conjectures

• A large number of applications from scientific and computing fields, 
as well as from everyday life

•  Numerous historical notes and biographies that spotlight the people 
and events behind the mathematics

• Motivational and humorous quotations. 
• More than 275 figures, photographs, tables, and reproductions of 

 currency that honor mathematicians
• Annotated suggested readings for interesting further exploration of 

topics.

Cengage’s book companion site www.cengage.com/math/gallian  includes 
an instructor’s solution manual with detailed solutions for all exercises and 
other resources. The website www.d.umn.edu/~jgallian also  offers a wealth 
of additional online resources supporting the book,  including:

• True/false questions with comments
• Flash cards
• Essays on learning abstract algebra, doing proofs, and reasons why 

abstract algebra is a valuable subject to learn
• Links to abstract algebra-related websites and software packages and 

much, much more.

Additionally, Cengage offers a Student Solutions Manual, available for 
purchase separately, with detailed solutions to the odd-numbered  exercises 
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Properties of Integers
Much of abstract algebra involves properties of integers and sets. In this 
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the 
so-called Well Ordering Principle. Since this property cannot be proved 
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of 
numbers. We say a nonzero integer t is a divisor of an integer s if there 
is an integer u such that s 5 tu. In this case, we write t | s (read “t 
 divides s”). When t is not a divisor of s, we write t B s. A prime is a 
positive integer greater than 1 whose only positive divisors are 1 and 
itself. We say an integer s is a multiple of an integer t if there is an inte-
ger u such that s 5 tu or, equivalently, if t is a divisor of s.

As our first application of the Well Ordering Principle, we establish a 
fundamental property of integers that we will use often.

 Theorem 0.1 Division Algorithm

Let a and b be integers with b . 0. Then there exist unique integers q 
and r with the property that a 5 bq 1 r , where 0 # r , b.

3

Preliminaries

When we see it [modular arithmetic] for the first time, it looks so 
abstract that it seems impossible something like this could have 
any real-world applications.

Edward Frenkel, Love and Math: The Heart of Hidden Reality

The whole of science is nothing more than a refinement of every-
day thinking.

Albert Einstein, Physics and Reality

0
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PROOF We begin with the existence portion of the theorem. Consider the set 
S 5 {a 2 bk | k is an integer and a 2 bk $ 0}. If 0 [ S, then b divides a and 
we may obtain the desired result with q 5 a/b and r 5 0. Now assume  
0 n S. Since S is nonempty [if a . 0, a 2 b ? 0 [ S; if a , 0, a 2 b(2a) 5 
a(1 2 2b) [ S; a ? 0 since 0 n S], we may apply the Well Ordering 
Principle to conclude that S has a smallest member, say r 5 a 2 bq. Then 
a 5 bq 1 r and r $ 0, so all that remains to be proved is that r , b.

If r $ b, then a 2 b(q 1 1) 5 a 2 bq 2 b 5 r 2 b $ 0, so that  
a 2 b(q 1 1) [ S. But a 2 b(q 1 1) , a 2 bq, and a 2 bq is the small-
est member of S. So, r , b.

To establish the uniqueness of q and r, let us suppose that there are 
integers q, q9, r, and r9 such that

a 5 bq 1 r,  0 # r , b,  and  a 5 bq9 1 r9,  0 # r9 , b.

For convenience, we may also suppose that r9 $ r. Then bq 1 r 5  
bq9 1 r9 and b(q 2 q9) 5 r9 2 r. So, b divides r9 2 r and 0 # r9 2 r #  
r9 , b. It follows that r9 2 r 5 0, and therefore r9 5 r and q 5 q9. 

The integer q in the division algorithm is called the quotient upon 
 dividing a by b; the integer r is called the remainder upon dividing a by b.

 EXAMPLE 1 For a 5 17 and b 5 5, the division algorithm gives  
17 5 5 ? 3 1 2; for a 5 223 and b 5 6, the division algorithm gives 
223 5 6(24) 1 1. 

Definitions Greatest Common Divisor, Relatively Prime Integers
The greatest common divisor of two nonzero integers a and b is the larg-
est of all common divisors of a and b. We denote this integer by gcd(a, b).  
When gcd(a, b) 5 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the 
Well Ordering Principle. 

 Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that 
gcd(a, b) 5 as 1 bt. Moreover, gcd(a, b) is the smallest positive integer 
of the form as 1 bt.

PROOF Consider the set S 5 {am 1 bn | m, n are integers and  
am 1 bn . 0}. Since S is obviously nonempty (if some choice of m and 
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n makes am 1 bn , 0, then replace m and n by 2m and 2n), the Well 
Ordering Principle asserts that S has a smallest member, say,  
d 5 as 1 bt. We claim that d 5 gcd(a, b). To verify this claim, use the 
division algorithm to write a 5 dq 1 r, where 0 # r , d. If r . 0,  
then r 5 a 2 dq 5 a 2 (as 1 bt)q 5 a 2 asq 2 btq 5 a(1 2 sq) 1 
b(2tq) [ S, contradicting the fact that d is the smallest member of S. 
So, r 5 0 and d divides a. Analogously (or, better yet, by symmetry), 
d divides b as well. This proves that d is a common divisor of a and b. 
Now suppose d9 is another common divisor of a and b and write a 5 
d9h and b 5 d9k. Then d 5 as 1 bt 5 (d9h)s 1 (d9k)t 5 d9(hs 1 kt), so 
that d9 is a divisor of d. Thus, among all common divisors of a and b, 
d is the greatest. 

The special case of Theorem 0.2 when a and b are relatively prime is 
so important in abstract algebra that we single it out as a corollary.

 Corollary 

If a and b are relatively prime, then there exist integers s and t such 
that as 1 bt 5 1.

 EXAMPLE 2 gcd(4, 15) 5 1; gcd(4, 10) 5 2; gcd(22 ? 32 ? 5, 2 ? 33 ? 72) 5  
2 ? 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are not. 
Also, 4 ? 4 1 15(21) 5 1 and 4(22) 1 10 ? 1 5 2. 

The next lemma is frequently used. It appeared in Euclid’s Elements.

 Euclid’s Lemma p | ab Implies p | a or p | b

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We 
must show that p divides b. Since p does not divide a, there are  
integers s and t such that 1 5 as 1 pt. Then b 5 abs 1 ptb, and since  
p divides the right-hand side of this equation, p also  divides b. 

Note that Euclid’s Lemma may fail when p is not a prime, since  
6 | (4 ? 3) but 6 B 4 and 6 B 3.

Our next property shows that the primes are the building blocks for all 
integers. We will often use this property without explicitly saying so.

50 | Preliminaries
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 Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This 
product is unique, except for the order in which the factors appear. 
That is, if n 5 p1p2 . . . pr and n 5 q1q2 . . . qs, where the p’s and q’s 
are primes, then r 5 s and, after renumbering the q’s, we have pi 5 qi 
for all i.

We will prove the existence portion of Theorem 0.3 later in this chap-
ter (Example 11). The uniqueness portion is a consequence of Euclid’s 
Lemma (Exercise 31).

Another concept that frequently arises is that of the least common 
multiple of two integers.

Definition Least Common Multiple
The least common multiple of two nonzero integers a and b is the small-
est positive integer that is a multiple of both a and b. We will  
denote this integer by lcm(a, b).

We leave it as an exercise (Exercise 10) to prove that every common 
multiple of a and b is a multiple of lcm(a, b).

 EXAMPLE 3 lcm(4, 6) 5 12; lcm(4, 8) 5 8; lcm(10, 12) 5 60;  
lcm(6, 5) 5 30; lcm(22 ? 32 ? 5, 2 ? 33 ? 72) 5 22 ? 33 ? 5 ? 72. 

Modular Arithmetic
Another application of the division algorithm that will be important to 
us is modular arithmetic. Modular arithmetic is an abstraction of a 
method of counting that you often use. For example, if it is now 
September, what month will it be 25 months from now? Of course, the 
answer is October, but the interesting fact is that you didn’t arrive at the 
answer by starting with September and counting off 25 months.  
Instead, without even thinking about it, you simply observed that  
25 5 2 ? 12 1 1, and you added 1 month to September. Similarly, if it is 
now Wednesday, you know that in 23 days it will be Friday. This time, 
you arrived at your answer by noting that 23 5 7 ? 3 1 2, so you added 
2 days to Wednesday instead of counting off 23 days. If your electric-
ity is off for 26 hours, you must advance your clock 2 hours, since  
26 5 2 ? 12 1 2. Surprisingly, this simple idea has numerous important 
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applications in mathematics and computer science. You will see a few of 
them in this section. The following notation is convenient.

When a 5 qn 1 r, where q is the quotient and r is the remainder upon 
dividing a by n, we write a mod n 5 r. Thus,

 3 mod 2 5 1 since 3 5 1 ? 2 1 1,
 6 mod 2 5 0 since 6 5 3 ? 2 1 0,
 11 mod 3 5 2 since 11 5 3 ? 3 1 2,
 62 mod 85 5 62 since 62 5 0 ? 85 1 62,
 22 mod 15 5 13 since 22 5 (21)15 1 13.

In general, if a and b are integers and n is a positive integer, then  
a mod n 5 b mod n if and only if n divides a 2 b (Exercise 7).

In our applications, we will use addition and multiplication mod n. 
When you wish to compute ab mod n or (a 1 b) mod n, and a or b  
is greater than n, it is easier to “mod first.” For example, to compute  
(27 ? 36) mod 11, we note that 27 mod 11 5 5 and 36 mod 11 5 3, so 
(27 ? 36) mod 11 5 (5 ? 3) mod 11 5 4. (See Exercise 9.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We pres-
ent two such applications.

 EXAMPLE 4 The United States Postal Service money order shown in 
Figure 0.1 has an identification number consisting of 10 digits together 
with an extra digit called a check. The check digit is the 10-digit number 
modulo 9. Thus, the number 3953988164 has the check digit 2, since  

Figure 0.1

70 | Preliminaries
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3953988164 mod 9 5 2.† If the number 39539881642 were incorrectly 
entered into a computer (programmed to calculate the check digit) as, 
say, 39559881642 (an error in the fourth position), the machine would 
calculate the check digit as 4, whereas the entered check digit would be 
2. Thus, the error would be detected. 

 EXAMPLE 5 Airline companies, the United Parcel Service, and  
the rental-car companies Avis and National use the mod 7 values of iden-
tification numbers to assign check digits. Thus, the identification num-
ber 00121373147367 (see Figure 0.2) has the check digit 3 appended 

Figure 0.2

Figure 0.3

†The value of N mod 9 is easy to compute with a calculator. If N 5 9q 1 r, where r is the 
remainder upon dividing N by 9, then on a calculator screen N 4 9 appears as  
q.rrrrr . . . , so the first decimal digit is the check digit. For example, 3953988164 4 9 5 
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, 
 replace N by the sum of its digits and divide that number by 9. Thus, 3953988164  
mod 9 5 56 mod 9 5 2. The value of 3953988164 mod 9 can also be computed by 
searching Google for “3953988164 mod 9.”
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to it because 121373147367 mod 7 5 3. Similarly, the UPS pickup re-
cord number 768113999, shown in Figure 0.3, has the check digit 2  
appended to it. 

The methods used by the Postal Service and the airline companies do 
not detect all single-digit errors (see Exercises 41 and 45). However, 
detection of all single-digit errors, as well as nearly all  errors involving 
the transposition of two adjacent digits, is easily achieved. One method 
that does this is the one used to assign the so-called Universal Product 
Code (UPC) to most retail items (see Figure 0.4). A UPC identification 
number has 12 digits. The first six digits identify the manufacturer, the 
next five identify the  product, and the last is a check. (For many items, 
the 12th digit is not printed, but it is always bar-coded.) In Figure 0.4, 
the check digit is 8.

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(a1, a2, . . . , ak) ? (w1, w2, . . . , wk) 5 a1w1 1 a2w2 1 ? ? ? 1 akwk.

An item with the UPC identification number a1a2 ??? a12 satisfies the 
condition

(a1, a2, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

To verify that the number in Figure 0.4 satisfies this condition, we  
calculate

(0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 6 ? 3 1 5 ? 1 
     1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1) mod 10 5 90 mod 10 5 0.

The fixed k-tuple used in the calculation of check digits is called the 
weighting vector.

Now suppose a single error is made in entering the number in  
Figure 0.4 into a computer. Say, for instance, that 021000958978 is 
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